Abstract: Background and objective:
Antibiotic have been used to treat acne for over 20 years and are still widely prescribed. Their efficacy is due partly to their inhibitory effect on cutaneous propionibacteria-the micro-organisms implicated in the pathogenesis of the acne vulgarise .Systemic and topical antimicrobial treatment for acne vulgaris remains the mainstay method of therapy in world Unfortunately, a significant and worrying increase in the number of antibiotic resistant strains of P. acnes has been reported in the last decade .Strains of Propionibacterium acnes (P. acnes) resistant to erythromycin, clindamycin , tetracycline , doxycycline and minocycline have been reported. The aim of the present study was to examine the antimicrobial susceptibility to 10 currently used antimicrobial agents ..

Material and method : 50 strains of P. acnes isolated from acne lesions and identified using a Rap ID ANA II panel Minimum inhibitory concentrations (MIC) were determined by the agar dilution method .erytromycine, ampicillin , and cyndamycine were the most potent drugs, followed by minocycline, nadifloxacin , cephalalexin , Doxycyclin, ofloxacin , and tetracycline. In terms of the MIC80, erytromycine and ampiciline were the most potent, followed by CLDM, NDFX, MINO, CEX, DOXY, OFLX, TC and gentamycin (GM).

Results : Most of the strains used were susceptible to the antimicrobial agents tested, strains of P. acnes resistant (MIC >= 12.5 µg/ml) to EM (4%), CLDM (4%), DOXY (2%) and TC (2%) were observed. In this study, no strains of P. acnes resistant to MINO were seen,

Conclusion: Our results suggest that oral MINO is the most useful treatment for acne vulgaris with minimal risk of bacterial resistance

Presentation: Poster